Germination and Biochemical Parameters of the Triticum aestivum Varieties (Pirsabak and Ata Habib) in Response to NaCl Stress

Main Article Content

Mian Fazli Basit
J. N. Azorji
M. O. Nwachukwu
Wisal .
Tabassum Yaseen
Fayaz Asad
Fazli Rahim
Farkhanda Bibi
C. M. Igbokwe

Abstract

Abiotic stress is an important ecological problem limiting crop growth and productivity of other important substances like Carbohydrates, protein, and Chlorophyll ‘a’ and ‘b’ contents in plants. The objective of the present study was to investigate the effects of various concentrations of NaCl, 20ppm, 40ppm, 60ppm, 80ppm, 100ppm and non-saline concentration on two varieties, Ata Habib and Pirsabak of Triticum aestivum. Effects of NaCl were observed on Biochemicals contents (Carbohydrates, protein, Chlorophyll a and b) and germination percentage, seedling shoot length, seedling root length, seedling fresh and dry biomass, root numbering and leaf numbering. The result showed that germination and seedling growth reduced with the increasing concentration of NaCl while total carbohydrates and chl ‘a’ and ‘b’ increased with increasing salt application on both varieties but protein contents decrease significantly on a high level of sodium chloride. The overall comparison of both varieties in morphologically and biochemically parameters under sodium chloride showed that Pirsabak was more affected by NaCl compared to Ata Habib indicating that the species can tolerate NaCl laden soils. We recommend that the experiment be repeated with more varieties of Triticum aestivum under field conditions to compare results and to obtain more NaCl tolerant varieties.

Keywords:
Sodium chloride, Triticum aestivum, biochemical contents

Article Details

How to Cite
Basit, M. F., Azorji, J. N., Nwachukwu, M. O., ., W., Yaseen, T., Asad, F., Rahim, F., Bibi, F., & Igbokwe, C. M. (2020). Germination and Biochemical Parameters of the Triticum aestivum Varieties (Pirsabak and Ata Habib) in Response to NaCl Stress. Asian Plant Research Journal, 4(1), 35-42. https://doi.org/10.9734/aprj/2020/v4i130078
Section
Original Research Article

References

Tesfay A, Sharma JJ, Kassahun Z. Effect of Weed Control Methods on weeds and wheat (Triticum aestivum L.) yield. World Journal of Agricultural Research. 2014;2: 124-128.

Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: The challenge of feeding 9 billion people. Science. 2010;327:812–818.
DOI:10.1126/science.1185383

Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327:818–822.
DOI:10.1126/science.1183700

Agarwal PK, Shukla PS, Gupta K, Jha B. Bio engineering for salinity tolerance in plants: State of the art. Mol. Biotechnol. 2013;54:102–123.
DOI: 10.1007/s12033-012-9538-3

Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN, Knauf VC, Lobell D, Mazur BJ, Molden D, et al. Radically rethinking agriculture for the 21st century. Science. 2010;327:833–834.

Qadir M, Quillerou E, Nangia V, et al. Economics of salt-induced land degradation and restoration. Natural Resources Forum. 2014;38:282–295.

Giri B, Kapoor R, Mukerji KG. Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of. Acacia auriculiformis. Biology and Fertility of Soils. 2003;38:170–175.

Al-Karaki GN. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae. 2006;109:1–7.

Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany. 2009; 104:1263–1280

Plaut Z, Edelstein M, Ben-Hur M. Overcoming Salinity Barriers to Crop Production Using 528 Traditional Methods. Critical Rev. Plant Sci. 2003;32:250-291.

Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 2005;444: 139–158.

Wang WX, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 2003;218:1–14.

Porcel R, Aroca R, Ruı´z-Lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development. 2012;32:181–200.

Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 2008;18:287–296.

Dudhane MP, Borde MY, Jite PK. Effect of arbuscular mycorrhizal fungi on growth and antioxidant activity in Gmelina arborea Roxb. under salt stress condition. Notulae Scientia Biologicae. 2011;3:71–78.

Talaat NB, Shawky BT. 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environmental and Experimental Botany. 2012;82:80–88.

Cuartero J, Bolarin MC, Asins MJ, Moreno V. Increasing salt tolerance in tomato. J. Exp. Bot. 2006;57:1045-1058.

Conde A, Silva P, Agasee A, Conde C, Gerós H. Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea japonica under salt and osmotic stress. Plant & Cell Physiology. 2011;52:1766–1775.

Zhu JK. Salt and drought stress signal transduction in plants. Annual Journal of Plant Biology. 2002;14:267-273.

Dominguez-Perles R, Martinez-Ballesta MC, Riquelme F, Carvajal M, Garcia-Viguera C, Moreno DA. Novel varieties of broccoli for optimal bioactive components under saline stress. J Sci Food Agric. 2011;91:1638–1647.

Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 2012;135:1065–1070.

Borghesi E, Lourdes Gonza´lez-Miret M, Luisa Escudero-Gilete M, Malorgio F, Heredia FJ, Mele´ndez-Martı ´nez AJ. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J Agric Food Chem. 2011;59: 11676–11682.

Government of Pakistan. “Economic survey of Pakistan 2014–15. Ministry of Food, Agriculture and Livestock.” Economic Wing, Islamabad, Pakistan; 2015.

Cuartero J, Bolarin MC, Asins MJ, Moreno V. Increasing salt tolerance in tomato. J. Exp. Bot. 2006;57:1045-1058.

Turhan H, Ayaz C. Effect of salinity on seedling emergence and growth of sunflower(Helianthus annuus L.) cultivars. International Journal of Agriculture and Biology. 2004;6(1):149-152.

Aktas H, Abak K, Cakmak I. Genotypic variation in the response of pepper to salinity. Scientia Horticulturae. 2006;110: 260-266.

Little TM, Hills FJ. Statistical methods in agricultural research (2 print) Univ. of California. 1975;242.

Taiz L, Zeiger E. Plant physiology. 4th ed. Sinauer Associates, Inc. Publishers, Massachusetts; 2006.

Ben NM, Rahmoune C, Sdiri H, Meddahi ML, Selmi M. Effect due stress salin sur la germination, la croissance et laproduction en graines de quelques variétés maghrébines de blé. Sécheresse. 2001;12 (3):167-174.

Keshavarzi MHB. Effect of salt stress on germination and early seedling growth of Savory (Satureja hortensis). Aust. J. Basic & Appl. Sci. 2011;5(2):3274-3279.

Al-Mutawa, MM. Effect of salinity on germination and seedling growth of chick pea (Cicer arietinum L.) genotypes. International Journal of Agriculture and Biology. 2003;5(3):226-229.

Kadri K, Maalam S, Cheikh MH, Benabdallah A, Rahmoune C, Naceur MB. Effet dustress salin sur la germination, la croissance et la production en grains de quelques accessions Tunisiennes d’orge (Hordeum vulgare L.). Science and Technologie. 2009;29:72-79.

Das GG, Ouddus MA. Kabir ME. Hetosis in inter specific Brassica hybrids grownunder saline condition. J. Biol. Sci. 2004;4(5):664-667.

Ibrar M, Jabeen M Tabassum J, Hussain F, Ilahi I. Salt tolerance potential of Brassica juncea Linn. Journal of Science and Technology University of Peshawar. 2003;27:79-84.

Jabeen M, Ibrar M, Azim F, Hussain F Ilahi I. The effect of sodium chloride salinity on germination and productivity of Mung bean (Vigna mungo Linn.). Journal of Science and Technology University of Peshawa.r 2003;27:1-5.

Werner JE, Finkelstein RR. Abidopsis mutants with reduced response to NaCl and osmotic stress. Physiologia Plantarum. 1995;93:659-666.

Khan MA, Gulzar S. Germination responses of Sporobolus ioclados: A saline desert grass. J. Arid Environ. 2003; 55:453-464.

Munns R, Goyal SS, Passioura J. The impact of salinity stress. In Blum Aed, Plant stress online; 2005.
Available:http://www.plantstress.com/Articles/index.asp

Cicek N, Cakirlar H. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology. 2002;28:66-74.

Bar-Tal A, Fergenbaun F, SparSks DL. Potassium-Salinity Interaction in Irrigated Corn. Irrigation Science. 1991;12:27–35.

Kaya C, Kirnak H, Higgs D. The effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). Journal of Plant Nutrients. 2001;24(9):1457-1471.

Ahmad S, Khan NI, Iqbal MZ, Hussain A, Hassan M. Salt tolerance of cotton (Gossypium hirsutum L) Asian Journal of Plant Science. 2002;1:715-719.

Akhtar J, Saqib ZA, Sarfraz M, Saleem I, Hao MA. Evaluating salt tolerantcotton genotypes at different levels of NaCl stress in solution and soil culture. Pakistan Journal of Botany. 2010;42:2857-2866.

Hajer AS, Malibari AA, Al-Zahrani HS, Almaghrabi OA. Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. African Journal of Biotechnology. 2006;5: 855-861.

Khatoon T, Hussain K, Majeed A, Nawaz K, Nisar MF. Morphological variations in maize (Zea mays L.) under different levels of NaCl at Germinating Stage. World Appl. Sci. J. 2010;8(10):12941297.

Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae. 2000;86:247-260.

Taiz L, Zeiger E. Plant physiology. 4th ed. Sinauer Associates, Inc. Publishers, Massachusetts; 2006.

Santos RC. EMBRAPA releases BRS 151 17, a large seeded groundnut cultivar for the Northeast region in Brazil. Int Arachis Newsl. 1998;18:1112.

Mittler R. Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci. 2002;9:405–410.

Hassanein RA, FM Bassouny, DM Barakat and RR Khalil. Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. 1- Changes in growth, some relevant metabolic activities andoxidative defense systems Res. J. Agric. and Biol. Sci. 2009;5(1):72-81.

Greenway H, Munns R. Mechanisms of salts tolerance in non halophytes. Ann. Rev. Plant Physiol. 1980;31:149-190.

Kasukabe Y, LX He, K Nada, S Misawa, I Ihara and S Tachibana. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and upregulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiology J. 2006;45:712-22.

Ibrahim M, Akhtar J, Younis M, Riaz MA, Anwarul-Haq M, Tahir M. Selection of cotton (Gossypium hirsutum L.) genotypes against NaCl stress. Soil and Environment J. 2007;26:59-63.

Chao WS, YQ Gu, V Pautot, EA Bray and LL Walling. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity and the wound signals systemin, methyl jasmonate and abscisic acid. Plant Physiol. 1999;120:979–992.